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ABSTRACT

This paper investigates the use of generalized

cross— correlation in pattern matching when the objects may

be of one or two dimens ions. General ize d corr elat ion can be

use d to determ ine the amount of di latat ion and rotation

between a given template and an object , in addition to

determining the relative translation . Two techniques are

discussed which break this four—dimensional correlation into

two two—dimensional  corre la t ions  making the problem

computationally feasible . The techniques were developed for

a specific class of images , however they can be applied to a

more general class.
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CHAPTER I

INTRODUCTION

In recent years it has become pract ical and des irable

to have the computer analyze images . An image is a

representation of a three—dimensional scene which may be

composed of many objects on an arbitrary background. Image

analys is can be use d for many purposes in a var iety of

f ields where the ca pability for a mac hine to inter p ret a

scene is desired. Some applications include processing of

satellite photographs and automatic monitor ing of p roduction

lines. The ultimate goal is to be able to determine what

objects appear in a three—dimensional scene and any desired

information about those objects. The problem is that each

object in the image has . six degrees of freedom: two

4 translat ions , size (dilatation), ‘rotation in the plane , and

two rotat ions out of the p lane. Th furt her complica te the

problem one object may partially obscure another. Although

at this time a complete solutio~b is beyond our insight and
capabilities , it is hoped that analysis simpler cases

w ill ena b le us to understand the pro b lem com~~~tely.

In this context , the wor~k presented here base d on

the restriction that all~ images are of a single object on a

black background. However , there are restrictions on the
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type of object  tha t  may appear in t .  image . For~~ ach~~~H . . .object in which we are interested , we need a~~~mplate which

contains an instance of that object , to m~~~h with the

object in the image . The object in the image ~~~ differ

from the one in the template by translation , d ilatat lo and

rotat ion . There are two questions which need to be answ~~c~~1

in the context of this problem. They are , is t here a~ *~~

instance of the template object in the image , and if so , \~
what is the rotat ion , di la tat ion , and translat ion of the

image objez~t with respect to the temp late object.  The

techn iques developed will then be exten ded to include images

which meet slightly less str ingent condit ions.

Cross—correlation has been used in the field of pattern

recognition primarily for the determination of the relative

translation between the image and the template. In this

paper , the term generalized correlation refers to the

correlation of two functions with respect to dilatation

(size), rotat ion , and translation . Techniques are described
.4

which enable one to use general ize d correlat ion to determine

the relative size and rotat ion along with the translat ions.

When doing this , one is dealing with a four—dimensional

problem which is computationally impractical. The goal of

this wor k is to find new techn iques to re duce t he

dimensionality of the generalized correlation computation .

Chapter II discusses cross—correlation , correlation

coefficients and computing cross—correlation using Fourier

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Transforms. The reader familiar with these topics may skip

this chapter with no loss of cont inuity.

Chapter III presents generalized correlat ion and two

methods for computing it. Generalized correlation can be

broken into two two—dimensional problems . Both methods

transform the image into a domain in which some degrees of

freedom are eliminated. The resulting problem is easier to

a t t ack .

Chapter IV presents algor ithms to compute ger eralize d

corr elat ion for both o~’ie and two dimensional images. The

images are of single objects on a black background. For

eac h dimens ionality two app roac hes to the computat ion of

generalized correlation are examined.

Chapter V exam ines these algor ithms for applica bility

to other types of images. Examples of the types of images

considered are multiple objects on a black background and a

$ingle object on a textured background. To extend this

techn ique to ot her cases , it may be necessar y to preprocess

the image before the correlation can be done.

Chapter V I is concerne d w ith the prob lems encountere d

and some computational techniques used in implementing the

algorithms on a digital computer. The problems are all

results of the discrete and finite nature of the computer.

Ways are discussed which minimize the effects of these

limitations without any significant change to the

a lgor i thms .
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Chapter VII presents  the results  of t es t ing  the system

for several different types of images while Chapter VI1I

concludes this paper with a discussion of the possibilities

for  the f u t u r e .
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CHAPTER II

BACKGROUND

Concep tua l l y ,  correla t ion provides  a q ua n t i t a t i v e

measure of the similarity of two functions. This work uses

two types of correlation , cross—corre lation and generalized

correlation . Cross—correlation , which is discussed in this

chapter , is use d to determ ine the degree of correla t Lo n

L between two functions when one is translated with res pec t to

the other. Generalized correlation will be discussed in

Chapter III. This chapter may be skipped by readers

familiar with cross—correlation .

Cross—Corre la t ion

The cross—correlat ion function computes the correlation

between two functions in terms of relative translations. In

one dimens ion this takes into account the e ffects of only

one variable (degree of freedom), namely the translat ion

(shift). The cross—correlation •(u) of two functions f(x)

and g(x) is defined as

~(u)= 1
1
1 f.~2f(x)g (x+u)dx

where T1 and T2 are denote the interval of interest . Thus ,

for any value of u , ~~u) is the correla tion between f and a

version of g which has been shifted u units. In the case of’

_

~

—_—_-

~
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two dimensional functions , the cross—correlation accounts

for translations in the x and y directions and is defined by

R 2-R 1 f~T~ f~ 2f(x ,y)g(x+u ,y+v)dydx

where T1 , T2 , R 1 , arid R2 denote the in terva l  of interest .

One of the disadvantages of the cross—correlation

function is that it gives no indication to the absolute

degree of similarity. All it provides for each shift is a

measure of the area of overlap between the two functions.

This deficiency can be rectified by normalizing the

correlation to arrive at the correlation coefficient r(u)

which is defined as

r(u)= •(u)

T2_T l~ J1T (~~
2
~~ f~

2g(x+u )2dx

The correlation coefficient r(u) ranges in value from +1 to

— 1. It is interesting to note that r(u)2 can be interpreted

as the fraction of’ one funct ion attr ibuta b le to the ot her

.4 [1]. It has been shown that the correlation coefficient is

an abso lute measure of the closene ss of two funct ions in a

least squares sense [2]. The correlation—coefficient in two

dimensions is

( ) •(u,v )r u ,v 
T2-T 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When using cross—correlation in two dimensional pattern

matching, there are usually two objectives . The first is to





~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 
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presente d in Chapter VI , but the underlying theme of this

I work is to find transform metho ds to ena ble fas ter

computation of generalized correlation .

‘4 -.
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CHAPTER III

THE MATHEMATICS OF GENERALIZED CORRELATION

A limitation of’ cross—correlation is that the functions

are correlated for relat ive translat ions only. The conce pt

- 
- of generalized correlation is to correlate two functions for

re lat ive rotat ion and di latat ion (scal ing ) as well as for

translat ions. This chapter presents generalized correlation

and discusses techniques for computing it. The goal of’ the

computat ional tec hniques is to develop algor ithms for

eff icient evaluat ion of the generalized correlat ion by us ing

transforms to arrive in a domain in which the problem

statement leads to a simple evaluation technique .

Generalized correlation will be discussed first ,

followed by a discussion of the computation techniques to be

used. The algorithms are presented in the next chapter

since each algorithm uses a different set of techniques to

determine the generalized correlation . The computation of’

the generalized correlation is based on separating the

problem into two simpler sub—problems .

Generalized Correlation

Generalized correlation extends the concept of cross—

correlation to account for the ways other parameters affect

the value of the correlation-coefficient. In one dimension

-

~

—

~

---- ----

~

-‘— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the correlation is done for bot h di latat ion (s ize) and

translation. The correlation can then be defined as a

func tion of translat ion , u , and size , s. This gives

,(u,s) T
h
T f~

2f(x)g(sx +u)dx

with the corres ponding correlat ion coeff icient

r(u ,s)= 1

~2 
_T

1
’IfT~

f(x) 2dxf 1
2g (sx+u ) 2dx

Note: Generally , onl y th e corre lat ion f u nc t ion will be use d

since the corre lat ion coeff icient can be obtaine d at an y

time by dividing by the product of the norms , or rms va lues ,

of the funct ions over the app ropriate interval.

Generalize d correlat ion in two dimens ions uses two

parameters which do not appear in the cross—correlation .

They are dilatation (size) and rotation (orientation). Both

of these parameters can be thought of as crea ting new

f u n c t ions , but it is more revealing to think of the

-8 correlat ion as a funct ion of hor izonta l pos it ion , u ,

vert ical pos it ion , v , size , s, and rotat ion , ~ . This gives

us

•(u ,v ,s ,u)=1
1
1 R2— R 1 fT~ f~~

f(x ,y)g(x ’ ,y’)dydx

where 
-

x ’.s(xcosa+ysin~ )+u

and

~~~~~~~~ ~~~~~~
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y ’ ~-s (ycosc *-xsi n~ )+v

One of the major problems with using generalized

correlation in practice is that since it is a function of

four independent var iab les it becom~ s computationally

impractical for all but small intervals of’ u ,v ,s, and a. If

one increases the interv al for eac h var iab le by the same

fac tor k then the amount of com putat ion increases by kL4. .

Furt hermore , if the limits of both R and T are increased by

some factor q the area of integrat ion is increa sed by q2 .

Con sequently it is des irable to f ind wa ys to compute the

four dimens ional correlat ion ot her than by di rec t

integration.

Separation of the Generalized Correlation

This section discusses two techniques of dividing the

four— dimensional correlation 4’ (u,v ,s,cz. ) or r(u ,v ,s,c z ) into

two two—dimensional problems . Both techniques are based on

the independence of the four degrees of freedom . This

independence enables one to determine the values of the

parameters representing the degrees of’ freedom separately.

i4ote that these separations assume that each image is of a

single object on a black background. The first technique

for computing the generalized correlation depends on the

follow ing property of the Four ier Transform : if

1(f(x))Er(w)

then

. 
~~~~~~,
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where ~~ represents the Four ier Transform . Since

translations in one domain become linear phase components in

t he o ther , the magnitude of the Fourier Transform of an

image has no information concerning the locat ion of an

object. This enables one to determine the scale and

rotat ion without hav ing translational information that one

can not interpret correctly. The portion of the Fourier

Tr ansform remove d , that is the phase , conta ins far more

informa tion than just the translational components .

Removin g the phase eliminates information that prevents the

Fourier Transform from being ambiguous . An example of the

amD iguities that phase resolves is a reflection of the

object through the origin (in one dimension , a mirror

image). Determination of the scale and rotation is

discussed in the next section on exponential polar

coordinates. This method of separation will be referred to

as the magnitude method.

The secon d techn ique for comput ing the genera lized

• correlation is based on the invariance of the centroid , or

first moment of an object , under rotation and scaling. The

centroid of a function f(x ,y) occurs at a point (a ,b) given

by

f
T2JR2f(x y)dydx

- - - - - -- ‘ ._— --

~

-- — - - —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _-—“_- -_
~- - _ -——- 
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Computat ion of the cent ro id  immedia te ly  obta ins  the

t r a n s l a t i o n  por t ions  of the cor re la t ion . The scale and

rotation factors are then obtained by first translating the

object so that the centroid occurs at the origin and then

correlatin g with respect to scale and rotation . This method

will be referred to as the centroid method .

Exponential—Polar Coordinates

The previous section discussed ways of separating the

generalized correlation into two lower dimensional problems .

In bot h ca ses , the image is left in a domain in which

translational information is not present. What is desired

is to cross—correlate these two functions with respect to

scale and rotation to determine what those factors are .

Cross—correlation correlates functions for different shifts ,

hence in th is case anot her doma in is nee ded where scale

chan ges are ref lec ted as sh if ts  in one direct ion an d

rotat ions as shifts in the other.

A rotation of an object , by the angle a , about the

or igin in a rectan gu lar coor dinate  sy stem is equ ivalen t to

shifting the object by a along the angle axis in a polar

coordinate system . In making this conversion , it is

necessary to insure  t hat the correl~ tion is not affected by

the coor dina te system in wh ich the func tion is ex presse d .

Exam ination of the Jacobian of the transformation gives 



________  - ~~~T~TrT

where

x ’ s(xcosa +yslna )+u

y = s (ycosa—xs i na)+v

- 
r ’ =sr

and O ’ O+ct

for  c ros s—cor re l a t i on  where Rxy and Ero are equ iva l en t

domains [4].

One of the disadvantages of rectan gular coordinates is

that scaling an object affects its description in both x and

y . In polar coordinates, however , scaling affects only the

radius , r. By convert ing to an exponential basis for r ,

scale factors are converted to shifts . This conversion is

achieved by the change of variables r=eW where w is the new

independent variable.

Figure 1 illustrates this conversion for a one

dimensional signal. In one dimension the radius r is

equivalent to the usual independent variable. Given f ( r )

and a scaled version of it , f(ar), substituting r e w 
and

b
a~e

f(r) =f(e~~):g(w)

f(ar):f(ae~
’
~)

:f(e W~~)~ g(w+b)

Figure  1 ( e )  and ( f )  show a one—dimens iona l  example  of two

_  ~~~-— - ---.- - -~~
-—_

~~~~~~~~~~~~
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f ( r)  f (r)

r ~~~~~~~~~~~~~~~~~~~~ , .  r

(a) f(r) (b) f(ar)

f (w)  f (w)

T~~~~~~~~~~~~~~~~~~~
. .  _ _ _

(c) f(e~”) (d) f(eW+b )

.8 

f(w) f(w)

( e )  f ( e ~’)e ”2 (f )  f ( e V
~~ )e~ /’2

Figure 1 Exponential Coordinates 

--~~~~~- - -~- 
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functions after the chan ge of variables where each function

4 has been mult iplied by e~
’
~
”2 in preparation foi

cross—correlat ing . The transformed correlation is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where Rr and Rw denote equivalent domains.

In two dimensions the same change of variables r=e~ is

applied radially. Using this transformation , scal in g in r

is equivalent to shifting in w. Again , we need to insure

the correlation is invariant. Here the Jacobian of the

transformation r=eW gives

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The two step change of coordinate systems shown can be

thought of as a single change of variables where

x=e”cosci

and

y=e 4’4sinct

This gives the sam e result as the two step process described

above .

This one—dimensional coordinate system will be referred

to as exponent ial coordinates, while the two—dimensional

will be called exponential—polar coordinates. The advantage

in convert ing from rectangular coordinates to exponential-

polar coordinates is that scale changes map into shifts

along the  w axis and ro t a t ion  maps in to  s h i f t s  along the e
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axis. A two dimensional cross—correlation can then be done

to determine the scale and rotation . Note that this

conversion is defined only for non—negative values of r.

General ized correlation can determine the

t rans la tional , rotational , and scale relationships between

two functions. Two methods have been discussed for

separating the generalized correlation into two problems

which are easier to solve . Both techniques assume that the

function is a single object on a black background.

Exponent ia l  coordinates  were developed as a domain in which

scale changes are reflected as shifts along one axis and

rotations are reflected as shifts along the other axis .

- .4
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CHAPTER IV

ALGORITHMS FOR COMPUTING

GENERALIZED CORRELATION

Generalized correlation can be useful in pattern

matching. When given a template which has an ins tance of

the object to be found , generalized correlat ior helps one

discern if that object appears in the image.  T rad i t i ona l ly ,

the template object can differ from the instance in the

image only by translation , thus cross—correlat ion is used to

find the instance. The use of generalized correlation makes

it possible for the template object to differ from the

instance in the image by a rotation and scale change in

addition to the translations.

The previous chapter discussed the significance of

generalized correlation and the mathematical techniques used

in computing it. This chapter will present algorithms which

use generalized correlat ion in pattern match ing . The

techn iques presented compute the correlat ion assuming the

funct ion being correlated is of a single object on a black

background. First , the magnitude and centro id methods for

one— dimensional pattern matching will be described.

Secondly, these methods will be discussed in relation to

two— dimensional pattern matching. 

-~~~~~~~~~~~ - -~~~~~~~~~• - . ~~~~~--~~~— i
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One—Dimension

— This work is concerned with two of the degrees of

freedom of a one—dimensional function . The first degree of

freedom is translation . The object of interest may occur

anywhere along the independent axis - Cross—correlation is

often used to determine the value of this variable.

However , cross—correlation can not determine if the

independent variable has been scaled. This is the second

degree of freedom with which this section is concerned. As

previously discussed , generalized correlation in

one—dimens ion  f ac i l i t a t e s  the computa t ion  of the most

probable values for  the var iables  which represent  these

derees of freedom by breaking the two—dimensional problem

into two one—dimensional problems .

Magni tude  Method

The algorithm for computing the one—dimensional

generalized correlation by the magnitude method is outl ined

in Figure 2. The first step is to take the magnitude of the

Fourier Tranoform of both the template and the image . This

removes all informat ion concern ing the locat ion of the

objects.

The second step converts scale factors to shifts by

conve r t i ng  to exponent i a l  coordinates  as discussed in the
exponential—polar section of Chapter III. This conversion

is dependen t  on two fac tors : a)  the  sca l ing  being done about

__________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—~~~~~~~~~~~~ -
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‘if
convert to convert to
exponential exponential
coordinates coordinates

cross-
correl ate C

‘I,
determine
scale
factor

de termine
translation

End

FI gure 2
One- dimensional generalized correlation. Magnitude method.
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the or igin , and b)  there being no translation between the

template and the image . Using the magnitude of the Fourier

Transform insures the above conditions are met , because the

- 
- magnitude of the Four ier  Trans fo rm of a scaled objec t  is

scaled about the origin and there  is no t r ans la t ion  in i t .

This makes the conversion possible. Since the magnitude of

a real funct ion is even , only the non—negative frequencies

need be considered. This is a prerequisite for the use of

the exponential coordinates.

The third step computes the cross—correlation of the

two func t ions , I.e.,magnitude of template in exponential

coordinates and magnitude of image in exponential

coordinates. This cross—correlation Is from —~~~ to since

the coordinate change maps the frequenc ies between 0 and 1

into the range —
~~~ to 0. The peak in this correlation occurs

at the location b , where the true scale factor s is related

to b by

s~e~~
as derived in Chapter  I I I .  At this  point a decision c~ n be

made whether or not the image contains an ins tance  of the

object in the template . Computing the

c o r r e l a t i o n— c o e f f i c i e n t  (which  ranges between +1 and — 1 )

gives the user a basis on which to decide . The decision of

which values represent a match must be determined

experimentally on sample data.

If it is decided that there is a match , then there

_ _ _ _ _ _ _ _ _ _  _ _ _ _



~~~ - -~~~~~~ TT ~~~ -~~~~~~~~~~~~~~~~~~~~~ TT ~~~~~~ ~T~~~TT~T

22

remains only to determine the amount the image has been

shifted with respect to the template. First , using the

scale fac tor  a l ready de termined , a scaled version of’ the

t empla te  is created in which  the templa te  object  is the  same

size as the object in the image . The image is now

cross—correlate d with the scaled template. The peak occurs

at a point  u , meaning the image has been shifted by u units

with respect to the template. It is not necessary that the

correlation coefficient be computed at this point if the

match/no match decision has been made.

Summarizing the magnitude method for one—dimensional

generalized correlation , there are five steps.

1. Find the magnitude of’ the Fourier Transform of the image

an d t he tem p late

2. Convert both the image and the template to exponential

coordinates

3. Cross—correlate to determine the scale factor

4. Create a scaled version of the template of the same size

as the image

5. Cross—correlate to determine the translation

Centroid Method

The centro id method for computing one—dimensional

generalized correlation determines where the centroid of’ the

image is and translates the image so the centro id is at the

origin. This removes the translational effects. The next

step would be to convert the image into exponential 

~~~- - - - - --. - - - ----~~~~~~~--—-~~~- - _ _ _
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coordinates. It is at this point the centroid method in

one— dimension breaks down .

The conversion to exponent ial coordinates has two

assumptions. The first is the object is scaled about the

origin. The second is the values of the function f(r) for

negative r do not matter. After shifting the centroid to

the origin , the first condition holds , however , the second

one does not. This is because there is part of the function

on each side of the origin . As a result the centroid method

is not used in one—dimension .

Two—D imens ion

Four degrees of freedom will be considered using

two—dimensional generalized correlation . Two of the degrees

of freedom are the translation in x and the translat ion in

y. An object can occur anywhere in the plane and so both

translations are needed to locate it. The other two degrees

of freedom are rotation and change of size (scaling).

Two— dimensional cross—correlation can be used to locate an

objeec . in an image when the template object differs only by

translation . However , generalized correlation can locate an

object in an image when the template differs by two

translations , a rotat ion in the plane and a change in size.

Trying to correlate with respect to four independent

variables is a four—dimensional problem which was discussed

in Chapter III.

The four— dimensional generalized correlation can be

~~~~~~ ~~~~~~ 
.
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separated into two sub-problems . The first technique of

separation to be discussed is the magnitude method . This is

based on using the magnitude of the Fourier Transform to

remove the translational informa tion from the analysis. The

second technique is the centroid method . This method

de term ines t he t rans lation by us in g t he fac t t hat the

centro id of an object is invar iant under rotation and

scaling of the object about the centroid.

Magni tude  Method

The magnitude method for computing the two—dimensional

generalized correlation is very similar to the magnitude

method for one—dimensional generalized correlation . The

basic appr~oach is:

1. Remove the translational information

2. Determine the scale factor and the rotation

3. Use the scale and rotat ion factors to help determ ine the

translations

It is important to remember that it is assumed that the

functions are each of a single object on a black backgroun d .

Figure 3 outlines the flo~. of the algorithm .

The first step of the algorithm is take the magnitude

of the two—dimensional Fourier Transform of the image and of

the template. This removes the translation dependent

information . The magnitude of the Fourier Transform of an

Image is an even function along radial lines. The

importance of this is that in the process of eliminating the 

----- - - - -—— ~~~~~~~~~~~~~~~~~~~~ _ _ _
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phase more informat ion is lost than nee d be , including the

ability to distinguish between a rotation of a and a

rotation of a+iT . The consequences will be discussed more

l a t e r .

The secon d ste p of the algor it hm is to convert the

magnitude from rectangular coordinates to exponential—polar

coor dinates. This convers ion was descr ibed in Chap ter II.

The magn itu de of the Four ier Transform is centered at t he

-: origin . Scaling and rotating an object in the image domain ,

scales and rotates the magnitude about the origin. This is

a prerequisite for the transformation to have the desired

effect.

The magnitudes of the image and the template are then

cross—correlated in exponential—polar coordinates. If the

thage is scaled by a and rotated by a then the peak in the

correlat ion occurs at ( b ,8 ) where

a = e’~
and either a = 8

•8

or a= B +ir .

The value of a can not be de t e rmined  comp letely because the

corre la t ion  is done w i th  the  m a g n i t u d e s  of the image and the

template. At this point the decision can be made whether or

not the  object in t he ima ge Is the  same as t he object in the

template. The correlation coefficient can be calculated to

give an Indication of whether or not the functions match.

The closer the value of the correlation coefficient is to 1

- - - - -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~

27

the more probable the two functions are the same . However ,

the smallest value which indicates a match has to be

determ ined experimentally for each type of app lication.

The fourth step uses the information generated in the

previous step to make two tem plates which have an instance

of the object the same size as the instance in the image .

In one template the- object has been rotated by 8 and in the

other the object has been rotated by 8 + ~ . This in sures

that one of the two scaled templates has the object oriented

the same way as it is in the image . The last step

cross-correlates the original image with the two scaled and

rotated templates . The translations and the decision of

which rotation is correct is made in this step. The

correlation coefficient for each correlation must be

computed. The correlation with the larger peak value is the

one with the correct value . Furthermore , the peak occurs at

(u ,v) or , in other words, the image was shifted by u in one

direction and v in the other direction relative to the
.8

tem plate. The correlation coefficient computed here could

be used to make the dec ision on whether the template and

image match rather than comput ing it when correlat ing for

scale and rotation .

In overv iew , the algorithm for computing

two—d imensional generalized correlation is:

1. Compute the magnitude of the Fourier Transform of the

image and of the template

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2. Convert both to exponential—polar coordinates

3. Cross—correlate to find the scale factor and the two
S

possible rotations (8 and 8+ir )

4. Create two scaled and rotated templates , one for  eac h

rotation to find the correct rotation and the

translation

Centroid Method

The centro id method for computing the generalized

correlation in two—dimensions computes the centroid of the

image an d tem plate in or der to determ ine an d remove the

translation . It is necessary that the image and the

template  both be of a s ingle object  on a black background

otherwise the location of the cent ro id  of the  image may not

be at the centroid of the object. This would cause an

incorrect analysis of the situation . Figure 14 o u t l i n e s  the

flow of’ this algorithm .

The first step is compute the centroid of the image and

of the template. Then shift the image and the template so

the centroid of each is at the origin . In this step the

translation has been determined and removed. What remains

to be determined is the scale factor , rotation , and whether

the image object  is an instance of the template object.

The second step converts the image and the templa te

from rectangular coordinates to exponential—polar

coordinates. Since the centroid is invariant under scaling

and rotation , the image will be scaled and rotated about the
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origin with respect to the template. This insures that the

conversion to exponential—polar coordinates will have the

desired results.

The third and last step is the cross—correlation to

determine the scale factor and the rotation . If the image

has been scaled by a and rotated by a then the peak in the

cross—correlation occurs at (b ,6) where

a=e~~

and a=8 .

The correlation coefficient can be calculated in order to

assist in the match/no match decision . Again , t he closer

the value of the coefficient is to 1 , the more likely it is

that the peak is caused by a match between the temp late and

the image .

The centro id method algorithm is relatively short and

simple. It is:

1. Compute the centroids of the template and image , shift

so the centroids are at the origin
8

2. Convert to exponential—polar coordinates

3. Cross—corre la te  to de termine  the scale fac tor  and the

rotation

Summary

This chapte r  has descr ibed a lgor i thms  for us ing

generalized correlation when the template and the image are

of a single object on a black background. Algorithms for

both one—dimensional and two—dimensional pattern matching 
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were discussed and developed.

I
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CHAPTER V

APPLICATIONS OF GENERALIZED CORRELATION

TO PATTERN MATCHIN G

The a lgor i thms described in Chapte r  IV assume both the

image and the templa te  are of a sin gle object on a black

backgroun d . Under some circumstances it is possible to use

these techn iques as part of a pattern matching scheme when

the image is not of a single object on a black background.

The three schemes presented in this chapter consider images

composed of multiple objects on a black background , a single

object. on a textured background , and a single object with

additive noise.

Mult iple Objects on a Black Background

.4 

The algorit hms presented for computing generalized

correlat ion were developed for the special case of a single

object on a black background. These techniques can be

exten ded to other cases under various circumstances. One

case to which these algorithms are applicable is that of

mult iple objects on a black background.

The case of multiple objects on a black background can

not be handled directly with either the magnitude method or

the centroid method . The magnitude method fails because the

Fourier Transform of the image is the sum of the Fourier
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Transforms of the objects in the image . The magnitude is

the square of the Fourier Transform and this causes the

effects of each object to be mixed in such a way that the

algorithm can not sort them out . The centroid method fails

because the cent ro id of t he ima ge is unl ikely to be at the

centro id of an object.

These difficulties can be avoided by appropriate

preprocessing of the image . The image can be divided into

pieces where each piece is of a single object on a black

background. Each piece can then be used as an image in the

generalized correlation procedure . The problem of dividing

the image into the appropriate pieces is a special case of

image segmentation . There are several techniques available

for segmentation including edge detection and boundary

trac ing , texture classification , and various types of

feature extraction [5].

The only limitations on analyzing an image with

multiple objects on a black background are imposed by the

limitations of current algorithms to separate the objects.

As the algorithms for object separation improve , this

process will become more valuable.

Single Object on an Evenly

Textured Background

Images of real objects are rarely on a black backgroun d

(because any surface will reflect some light). This makes

it desirable to fin d ways of using generalized correlation

— ~~~~~~ -~~ — -- ~~~~~~~~~ _ - _ -~~~~~~~~.- ~~~~~~~~~~-— —.--~~~~~—- - --— —-
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when the background surface is evenly textured. This

su r fac e must  be app rox imate l y the same ever ywhere in the

image in order for this analysis to be valid.

There are two approaches to this problem. The first

approach is to process the image with the texture and -

determine under what conditions generalized correlation will

work acceptably. The second approach is remove the object

from the texture and then process the object. Both the 
-

magnitude method and the centroid method will be analyzed —

with each approach.

Processing with Textured Background

The methods this work discusses for computing -

generalized correlation will not always work when the image

is of an object on a textured background. Through

u n d e r s t a n c i n g  why these t echn iques  will  not always work , an -
-

understanding of when they will work can be developed. The

centroid method is not appropriate for images with textured -
-~~ background because the texture affects the location of the I

centroid. Consequently, when the centroid is shifted to the -

origin , there is no assurance t h a t  the centroid  of the -

object is at the origin. In fact , the presence of

background texture is virtually a guarantee the centroid -

method will fail .

The magnitude method is not as sensitive to texture d

backgrounds as the centroid method. The texture does affect

the magnitude of the Fourier Transform , however un der some

__I -~~~~~~_-~ -~~~~~~~~~~~~~ __  -- - - - - -~~~~~~~--- —.-— —— — -- - - - - -
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con ditions this can be thought of as noise. If th:

amplitude or brightness of the texture is much lower than

that of’ the object , the portions of the magnitude

attributable to the object will dominate the magnitude of

the image . As long as this is true the generalized

correlation will be approximately correct , but the error due

to the texture will be reflected by lower values for the

correlation coefficient.

When the components of the magnitude due to the object

no longer dominate those due to the texture , the algorithm

breaks down . This can be caught by the correlation

coefficient because it will decrease in value as the effect

of the texture increases. The result of this is comput ing

general ized correlat ion can be done with images of a single

;~ bright object on a dark background.

Separat ion of Object from the Texture

The secon d approach for processing images of a single

object on an evenly texture d background is remove the object

from the background. This can be done by using a texture

classifier to determine where the evenly textured background

ends and the object begins [6]. The extracted object is

then placed on black background to be used in generalized

correla tion .

Unfortunately the texture classifiers that are

curren tly available in general can not do a perfect job of

separating the object from the texture . What generally

_ _  _ _ _  _ _ _ _ _  _ _
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happens is the extracted object still has some small

portions of the texture and has lost some corners or

protrusions of the original object. Next , the extracte d

object is placed on a black background to be used in

generalized correlat ion .

The magnitude method will work well if there is very

little texture and essentially all of the object present.

As the quality of the extraction goes down the ability of

t he m~~ n itude met hod to f in d the correct parameters  w ill

degrade . This is because the portions of the texture that

are inclu ded as part of the object cause potentially severe

distortions of the magnitude.

When app lying the cen troid method it may suffer if the

centroid of the pieces of the object not extracted and the

centroid of the pieces of texture added are not very close

to the centroid of the original object. If these centroid s

are not close to gether , the extracted object will not be

centered  proper ly  for  the  conversion to e x p o n e n t i a l— p o l a r

coordinates. In the cases when the centroid of the

extracte d object is appropriate , this method will work. The

corre la t ion  coe f f i c i en t  must be checked to insure that it is

possible to recognize when the degradations become severe .

The ability of these algorithms to produce meaningful

results when separating the object from a textured

backgroun d is depen dent upon the techn iq ues ava ilable to

separate  the  objects  from the texture . Both methods become
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less useful as the extracte d object differs more and more

from the original object.

A d d i t i v e  Noise

Generalized correlat ion in the presence of addi tive

noise is equivalent to working with a single object on a

textured background where the object has been degraded. The

discussion of the algorithms when working with a single

object on a black background apply here . The only

difference is the correlation coefficient will be lower

because the object has been degraded.

Summary

This chapter has described algorithms for using

generalized correlation in two—dimensional pattern matching.

Two basic algorithms were used , both based on separating the

generalized correlation into sub—problems . The two

algorithms were the magnitude method and centro id method

.8 

aescribed in Chapter IV . These were developed for a single

object on a black background in one and two dimensions.

They were then examined for use with multiple objects on a

black background , a single object  on an evenly textured

background , and an image that has been degraded by additive

noise. 

,
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CHAPTER VI

IMPLEMENTATION PROBLEMS AND

COMPUTATIONAL METHODS

Implement ing the computation of generalized correlation

by the algorithms described in Chapters IV and V on a

digital computer presents several problems . This chapter

presents the implementation problems , why they arise and

steps to be taken to solve them . Also inclu ded is a sect ion

on computational methods.

- - The problems tha t  arise are as a resul t  of the f i n i t e

nature of a digital computer. This requires images to be

sampled at a finite num ber of points. Sampling and

truncat ion are the fundamental issues of concern . The

problems to be discussed are :

1. The initial sampling of an image

2. The infinite extent of the exponenti~tl— polar coordinate

system

3. The interpolation necessary to change coordinate systems

Sampling an Image

The need for sampling the image is forced by the

discrete nature of the digital computer. The sampling

theorem states that in order to correctly determ ine the

function from its samples , the samplin g frequency must be at

— ~~~~ . ~~- ~~~~~. ~~~~~~~~ - _ - ~~-~~~~~— -~~ - --—- -------- ~~~--- -- - —~~-
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least twice the h ighest f re quency present in t he func t ion

[7]. General ly the image will have to be low pass filtered
4.

before it is sampled to meet th is con dition. Fortunate ly ,

many digitizers low pass filter the image as they sample.

If this criterion is not met , the digitized version of the

image may not be interpreted correctly.

The Infinite Nature of Exponential—

- .- Polar Coordinates

During the discussion of the conversion from

- - rectangular to exponential coordinates, it was noted that

the range 0 to 1 is map ped into the range -
~~~~ to 0. This is

caused by the change in variables r=e~
1 

. Thus , after the

change of variables the function has infinite spread ,

whereas before it has a f i n i t e  spread.

As part of the coordinate change, it is important to

insure that the integral of the func tion is invarian t un der

this transformation . In Chapter III the following

.8 transformations were derived: in one dimension

f(r) ~~ f(e~’ )e
”2

and in two dimensions

f(r,O )—* f(eW ,e )e~”

The solution to the problem of the infinite extent of the

transform lies in the eW and e~’~
’2 terms. The eW and

terms become extremely small very quickly as w becomes more

negative . Truncating the function for w<b where b<O

introduces an error E which is

--

-~
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E f b f(eV4)e~
4/’2dw

Approximating f(eW ) over the range — ~ <w< O (equivalent to

f(r) for (O<r<1) with a constant k=sup(f(O),f(1)) gives

E f b ke 5’4~’2 dw

keW I’2<k

Consequently, if b is sufficiently negative , the e r ror

in t roduced  by t r u n c a t i n g  can be kept as small as desired .

Simi l a r ly ,  it can be shown the  error caused by t r u nc a t i n g  in

the exponen t i a l—pola r  domain is less than 2~ ke
b.

This analysis indicates that the error introduced by

truncating the exponential and exponential—polar coordinate

representations of images can be made acceptable. A simple

expression which bounds the error as a function of the value

of w at which the image is truncated was derived above.

Interpolation

Two factors make it necessary to interpolate the

f u n c t i o n  which represents  the image . The fact that the

image has to be sampled coupled with the need to change

coordinate systems makes it necessary to determine values of

the  f u n c t i o n  at points  between samples. Thus it is

necessary to perform some type of interpolation . The ideal

interpolation scheme will be discussed first , followed by

descriptions of two practical interpolation schemes. 
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Ideal Interpolation

In te rpo la t ion  can be considered as a convolu t ion  of the

funct ion with an interpolation kernel. It is well known

that if the sampled function is band limited (not aliased)

the proper conv olut ion kernel is

sin( irx fX )
(-lTx/X)

where  the  samples are X u n i t s  apart  [8 ] .  This kernel  is

referred to as sin(x)/x or sinc(x). Similarly the

two—dimensional convolution kernel is

s i n(~ix fX 1 sin(-iry/Y)
- (wx/X) (iry/Y)

This interpolation kernel will perfectly recover any

funct ion which was properly filtered before sampling. To

interpolate the function at a point (x,y) the following

summat ion is used

f(x ,y)= ~ ~ f(kx ,jy)51~~
7T (X kX)/X) Sin çw( y- .~Y)/Y)

k=-~ ~~~~~~~~~~~~ 

ii x-kX)/X 1r~y -J Y)/Y

The d i f f i c u l t y  wi th  s i n ( x ) / x  i n t e rpo la t ion  is the

ke rne l  has i n f i n i t e  support . Consequentl y , it can not be

used since the computa t ions  need to be f i n i t e .  This leads

to the nex t  sect ion on ir it e rpo lan t s  ac tua l ly  implemented  and

used.

Prac ti cal Interpolat ion

Two interpolation schemes are implemented. They are 

- - --~~~~~~~~~~-~~~~-- -_ -- -~~~~~~ - -~~~~~ 
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bilinear and a windowed two—dimensional sin(x)/x

interpolants. The bilinear interpolant is implemented

because it uses a relatively small amoun t of execu tion tine .

This can be very important when interpolating an image which

contains a large number of points. The windowed sin(x)/x is

used to approximate ideal interpolation . By comparing the

results of this latter interpolant with those of the

bilinear scheme , an estimate can be obtained of the error

introduced by the bilinear scheme .

Bilinear Interpolation

Linear interpolation is one of the simplest and most

common interpolants used . The linear interpolant is

f(x)=f(m).s- (x—m)(f(m+1)-f(m))

where m<x<m+ 1 [9]. Bilinear interpolation interpolates

f(x,y) by performing the following linear interpolations as

shown in Figure 5:

1 . Linearly interpolate f(x ,n) where n<y<n+ 1 and m<x<m + 1

2. Linearly interpolate f(x ,n+ 1)

3. Linearly inter polate f(x,y) from f(x ,n) and f(x,n+ 1)

Al though this interpolant can be easily computed , the

artifacts introduced by this scheme are not always

acceptable [8]. In order to determ ine the effect of these

artifacts , a better interpolant is used for comparison .

_  ~~~-- -  ~~~~- —- -  ~~~~~~~~~~~ - _ - - - -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

143

f(m ,n+l)

f ( x ,n + l )

f(m+l ,n+l )

f(x ,y)

f (m ,n
f ( x ,n)

f (m +l ,n)

Figure 5. Biline ar interpolation.

Windowed Sin (x)/x

Ideally interpolation should be done using the sin(x)/x

kernel , but the i n f i n i t e  ex ten t  of this  kernel  p rec ludes

this  in prac t ice . Trunca t ing  the sin(x)/x function produces

a f i n i t e  approx imat ion  tha t  can be acceptable  if the l eng th
8

of the truncat ion window is sufficient [9). The same

accuracy can be achieved with a shorter , but more

sophis t i ca ted  window [ 1 0 ].  For large windows the  windowed

sin(x),/x interpolant approaches the ideal sin(x)/x

i n t e r p o l a n t .

The one— dimensional interpolation formula for windowed

sin(x)/x is
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b
f(x)= ~ f(kX)sinc(x-kX)W( x-kX)k=a

where

W(x) is the window function of length N ,

a is the smallest integer >x—N /2 ,

b is the greatest integer <x+N/2

and X is the sampling interval .

In two— dimensions the interpolation formula is:

b d
f(x ,y)= ~ ~ f(kX ,jY)sinc (x_ kX)sinc(y_jy)w(x .. kx ,y_~ y)k=a j=c

where

W (x ,y) is the window function of sized N by H,

a is the smallest integer >x—N/2 ,

b is the greatest integer <x+N/2 ,

c is the smallest integer  > y — M / 2 ,

d is the greatest integer <y+M/2 ,

and X and Y are the sampling intervals.
8

The windows used in this work were a one—dimensional

Hann ing window and a two—dimensional separable Hanning

window. They are given by

in one dimension , where N is the window length , and in two
dimensions

_ _ _ _ _ _ _  _
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where the window size is N by M. There are many other H

windows which  may be used in place of the  H ann ing  window

with  d i f f e r i n g  e f f ec t s  upon the accuracy .

Computational Methods
— There are two items tha t  need to be ment ioned  in

regards to the computations. The first is the selection of

the sampling frequency when converting to exponential-polar

coordina tes .  The second is the technique  used to com pute

cross—corre la t ion . —

Sampling in Exponen t i a l—P ola r  Coordinates

When converting from one coordinate system to another

it is important that the errors introduce d be minimize d .

One as pect of this minimizat ion is insur ing that t he

sampling fre quency is chosen in such a way as to avo id

aliasing. The way to avoid aliasing is to insure that when

the samples for the exponential—polar coordinate system are

placed in the rec tangula r  grid they are never farther apar t

than the samples of the rectangular function . In terms of

Figure 6 :.his means that the distance between any two

adjacent radial lines ,b , is never greater than the or iginal

sample spacing a. Also the distance between two adjacent

samples on a radial line c , must not be greater than the

original sample spacing a.

L~ -
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a

+ -  -1- +

+ + ±

c

Figure 6. Exponential- polar
coord inates on a rectangular grid.

The num ber of samples M , in the exponential domain ,

needed to avoid aliasing for a one—dimensional signal f(x),

where f(x) is defined for O<x<N , must be chosen such that

eM _e (M
~~~~~=i

MAw
and e -l

where ~w is the exponential sampling interval . It can be

shown that this gives M N ln N [11]. For two—dimensional

signals , the above is the appropriate sampling frequency

radially, however the angular sampling frequenc y must still

be determined. The angular samples are farthest apart at

the max imum radius R. The number of angles at which samples

must be taken , k is given by

I 
—
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k> 21TR .

There is no problem introduced in the changing of coordinate

systems as long as the resampling rates are greater than or

equal to the ones given above.

Computa t ion  of Cross—Corre la t ion

Using d i rect  summat ion  the cross—corre la t ion  of two

discrete functions of length N can be computed directly by a

summat ion in a time proportional to N 2 . Using Fourier

Transforms to compute the correlat ion (as discussed in

Chapter II) the time required becomes proportional to N ln N

provided the transforms are implemente d along the lines of

the Cooley—Tuke y a lgor i thm [ 1 2 ] .  Comput ing

cross—correlations by direct summation of N by M images is

proportional to N M , while using Fourier Transforms the

proportionality is MN ln MN. To compute cross—correlations

of sampled data this way requires using the Discrete Fourier

Transform (DFT), which necessitates some precautions.

The cross—correlation c(x) of two functions f(x) and

g(x) using Fourier Transforms is

c(x)4~~(F(u )G (u ))

where F(w ) and G(~~) are the Fourier Transforms of f(x) and

g(x) respectively, and denotes the inverse Fourier

Transform . When f and g are sampled functions , the discrete

Fourier Transform (DFT) must be used. If interpreted

correctly, this does not change the above technique for

computing the cross—correlation . The DFT treats all signals

- —— —.

~ 
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as the p r inc ipa l  per iod of a periodic function . The

c r o s s — c o r r e l a t i o n  computed  w i t h  the DFT is therefore  a

circular cross—correlation . Linear cross—correlation can be

computed by douDling the length of f and g, by padding with

zeros. This will allow the cross—correlation to avoid the

periodic nature of the DFT. Implementing the DFT with a

fast transform technique makes this method of computing the

cross— correlation faster than direct summation .

The implementation of the algorithms for computing

generalized correlat ion uses Fourier Transforms to com pute

cross—correlation . When correlating to find the

translations in a two—dimensional image of size N by M ,

enough zeros must be added to make the DFT size 2N by 2M to

insure the result is the linear cross—correlation . The

cross—correlation in the exponential—polar coordinate space

needs to be handled differently. In Chapter II it was

explained how a rotat ion in rectangular coordinates map into

a circular shift in exponent ial coordinates. Consequently,

a circular correlation is needed along the angle axis.

Linear correlation , however , is still needed radially. As a

resu lt , to cross—correlate two functions f(r,O) and g(r ,6)

of size N by H, zeros must be added to make the size 2N by H

for the proper combination of linear and circular

correlation . It is interesting to note that by using the

Fourier Transform to com pute correlat ion , the conversion —

from rectangular to exponential—polar coordinates and 
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correlating using the Fourier Transfcrm is equivalent to

— 
converting from rectangular to the usual polar coordinates

and correlating using Melliri Transforms radially [11].

Summary

This chapter has dealt with a series of implementation

considerations. The first section considered the issue of

sampling the image correctly. The infinite extent of

exponential—polar coordinate conversion forces truncat ion .

It was shown that the error introduced can be rrade

arbitrarily small. Since the coordinate conversion orces

resam plin g , the issues involving interpolation were

analyzed. The last section discussed sampling frequency in

the exponential—polar coor ’inate system and computation of

cross—correlation using Discrete Fourier Transform (DFT).
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CHAPTER VII

RESULTS

This chapter describes some results of pattern matching

done by using the generalized correlation algorithms

presented. Results were obtained in both one and two

- dimensions. The first section discusses an example of

one— dimensional generalized correlation . The second section

presents examples of pattern matching in two—dimensions.

One—Dimension

Figure 7 is a sequence showing the image function and

— the template function and their correlations at various

steps in computation of generalized correlation . The

computation was done by the magnitude method as described in

Chapter IV (and outlined in Figure 2). The image in this

exam ple is one half the size of the template. Part (a) of

Figure 7 is the image while part (b) is the template. The

first step in computing the generalized correlat ion is to

I’ 

take the magnitude of the Fourier Transform of the image and

the template. These magnitudes are shown in parts (c) and

(d). The functions are then put into the exponential

coordinate domain with the result shown in parts (e) and

(f). Notice that the two functions do in fact appear to

differ only by a translation . These two functions were then

—- - -— ~~~~~~ — ~~~~~~~ ~~~~~~~~~~~~~~~~.— -- - -  --— - - - -~~~- —~~~~~- --~~~~~ - --~~- - - ---—~~~~~~~~~~-- -~~~~~~~ -- - - --
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Figure 7. Genera lized correlation in one -d imension.
Magnitude method.
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cross—corre la ted  g iv ing  the correlation function shown in

part (g). The peak in the correlation function gives the

translat ion in exponent ial coordinates which correspon ds to

the scale factor . A scaled template was then created and

cross—correlated with the original image to get the

translation , as shown in part (h). In this correlation the

peak gives the relative translation between the image and

the template. Table 1 summarizes the results of this

experiment. The computed scale factor of .1499 is as close

the the actual value as can be done without carefu l

interpolation of the correlation function . This is because

the correlation is a discrete function .

In the above example , all interpolations were done

using linear interpolation. The same algorithm an d

funct ions were tried using a windowed sin(x)/x interpolant.

The results were identical , indicating that the error

introduced by the linear interpolant was small with respect

to the other sources. In conclusion , the above results
•8

strongly support the validity of the techniques developed.

TABLE 1

RESULTS OF ONE -DIMENSIONAL GENERALIZED CORRELATION

Ac tual Computed Correlation
Value Value Coef ficient

Scale .5 .499 .9995

Transla tIon 218 218 .9998

_ _ _ _ _ _ _ _ _  ~~ -_ -- -- 
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Two—Dimensions

Two methods of computing generalized correlation in

two— dimensions were discussed in Chapter III. Both are

illustrated here with the same image and template in order

to demonstrate the differences. The magnitude metho d is

shown first , followed by the centroid method example.

Three examples are shown using both the magnitude and

the centroid methods. The first example is referred to as

“Patch” since it is composed of bicub ic patches. The second

exam ple is the same as the first with a di fferent scale

factor and rotation . Since the angle of rotation is 90

degrees it will be referred to as “N inety ” . In the third

exam ple the object is cross shaped hence its name is

“Cross ”. Table 2 summarizes the relationships between each

image and its corresponding template. When reading these

results , it is important to remember the images and the

TABLE 2

SCALE AND ROTATIONAL RELATIONSHIPS BETWEEN IMAGES
AND TEMPLATES IN TWO -DIMENSIONAL
GENERALIZED CORRELATION EXAMPLES

Name of Scale Rotation
Image Fac tor in Radians

4 Patch .25 2.5

— N inety .5 1.57

Cross 1.28 1.57
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templa tes  are descr ibed on a 64 by 64 point  g r i d .  This

relatively coarse grid causes a large amount of information

to be lost.

Magni tude  Method

Figures 8, 9, and 10 i l lus t ra te  several of the steps in

computing the generalized correlation by the magnitude

metho d for the  Patc h , Ninety and Cross images respectively.

The image and the template are shown in parts a and b. The

first step of the algorithm is take the Fourier Transform of

the image and the template. The magnitudes are pictured in

parts c and d. The functions which result from the

conversion to exponential—polar coordinates constitute parts

e and f. The cross correlation to determine the scale

factor and the rotation is shown in part g.

Table 3 summarizes the results of the experiments. The

translations have been om itted from the table for clarity

and since the emphasis of this work is on correlat ion for

.4  scale and rotation .

The Patch proved to be a very difficult example for two

reasons. First , the scale factor of .25 on a 64 by 64 grid

generates an extremely small image . The amount of

information avaliable about the image is therefore quite

small. The second d i f f i c u l t y  is that the magnitude of the

Four ier Transform is close to being circularly symmetric for

the  lower f r equenc i es .  Host of the i n f o r m a t i o n  w h i c h

indicates that the function is not circularly symmetric is

I ’
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(a) Image (b) Templa te

(c) Magnitude of image (d) Magnitude of template

(e) Image ma gnitude in (f) Template magnitude in
exponential- polar exponential -polar
coordinates coordinates

(g) Scale and rotation
correlati on

Figure 8. Generalized correlat ion in two-dimensions.
Magnitude method for Patch image . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~—-~~~~~~~~~



(a) Image (b) Template

(c) Magnitude of image (d) Magnitude of template
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(e) Image magnitude in (f) Template magni tude in
exponential -polar exponential—polar
coordinates coordinates

.8

(g) Scale and rotation
correlation

Figure 9. Generali zed correlation in two -dimensions.
Magnit ude method for Ninety image.
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Ce) Image magnitude in (f) Template magnitude in
exponential -polar exponential-polar
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(g) Scale and rotation
corre l a ti on

Figure 10. Generalized correlation in two -dimensions.
Magnitude metho d for Cross image.
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in the phase which  is not used in th is  method. Since the

ima ge is so small , t he lower fre quenc ies a f f ec t  the

correlation more than the higher frequenc ies, where the

e f f e c t s  of the ro ta t ion  are more p ronounced .

The Ninety example uses the same object as the Patch

with a different scale factor and rotation. In this case

the difficulty is again the almost circularly symmetric

na tu r e  of the magn i tude  of the f u n c t i o n . The Cross is an

example where the magnitude method works well. In this

example there is little circular symmetry in the magnitude .

This is largely  due to the  d i s con t inu i t i e s  or sharp edges in

the original function .

The above discussion is primarily concerned with the

difficulties presented by each example . However , t he re  are

two ways major ways in which significant errors are

introduced into the calculations. One source of error ,

which mainly affects the scale factor , is the truncat ion of

the function in exponential—polar coordinates. This is very
‘8

apparent in the Patch example and probably contributed to

the poor results. The funct ions were truncated too close to

the origin as indicated by the large value of the funct ion

where it was truncated.

The second source of error is the interpolation scheme

used. A bilinear interpolant was used and its effect can be

seen in in parts (e) and (f) of all three examples . The

artifacts introduced by th is interpolan t contr ibute to the
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poor de t e rmina t ion  of the angle  of ro ta t ion . In the Cross

exam ple , the scale factor was close to 1 , and with the

rotation being 90 degrees , the interpolant treated the image

and the template almost the same .

Centroid Method

The sequence of two—dimensional functions in Figures

11 , 12, and 13 illustrate steps in computing generalized

correlation us ing the cen t ro id met hod for t he Patc h , Ninety

and Cross images. The image is shown in part (a) with the

template in part (b). After the location of the centroid of

the ima ge was de termined , the image was shifted so the

centro id was at the origin as shown in part (c). This was

done with the assumption the centroid of the template was at

the origin. It should be noted that this assumption need

not be made since the template can also be shifted to bring

its centro id to the origin . Both the image and the template

were then converte d to exponential—polar coordinates as

shown in parts (d) and Ce). Lastly, these two funct ions

were cross—correla ted to determine the scale factor and

rotation , giving part (f).

The results of these three experiments are also

summar ized in Table 3. In the Patch example , the centro id

method , like the magnitude method , suffered from the large

scale factor on a small grid. Other than this one problem ,

the centro id method did extremely well , finding the correc t

scale and rotation in both the Ninety and the Cross
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(a) Image (b) Temp late

(c) Imaye with centroid at (d) Image in exponentia l-
origin polar coordi nates

(e) Template in exponential - (f) Scale and rotation
polar coordinates correl ation

Fi gure 11 . Generaliz ed correlation in two-dimensions.
Centroid me thod for Patch image.
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(a) Image (b) Temp late
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(c) Image with centroid at (d) Image in exponenti al-
origin polar coordina tes

4

(e) Template in exponentia l— (f) Scale and rotation
polar coor dinates correlation

Fi gure 12. Generali zed correlation in two -dimensions.
Centroid met hod for Nin ety image.

—

~

-.-- —--

~

— . —

~ 

_ _ _ _



(a) Image (b) Template

(c) Image with centro id at (d) Image in exponential -
origin polar coordinates

.4

(e) Template in exponential - (f) Scale and rotation
polar coordinates correlation

Figure 13. Gen eralized correlation in two-dimensions.
Centroid method for Cross image.
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examples. In the Cross example , notice the four peaks in

the correlation (part f), two of which are higher than the

other two . The two higher peaks correspond to the two

possible rotations of the symmetric object. Again , there

were errors introduced from the truncation in

exponential—polar coordinates and from interpolation errors.

An examination of the functions in exponential—polar

coordinates indicates that only the image in the Patch

example has very noticeable interpolation and truncation

errors .

Comparison of Magnitude and Centroid Methods

Looking at Table 3 it is obvious that the centroid

method is more reliable than the magnitude method . This ,

combined with the greater ease of computation , makes the

ceritroid method more attractive than the magnitude method .

Unfortunately, the centroid method is probably more

sensitive to noise and the presence of unwanted texture .

The reliability of the magnitude method can be increased by

increasing the number of samples in the image .

Summary

This chapter has presented results demonstrating the

techn iques developed in this work . Both the one—dimensional

example and the two—dimensional centroid examples work as

expected and determine correctly the relationship between

the image and the template. The two—dimensional magnitude

___________________ _ _ . -,-~~ - — -
_
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method works acceptably in only some cases because a large

amount  of in format ion  is lost in removing the phase .

f r 4
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CHAPTER VIII

CONCLUSIONS

The use of general ize d correlat ion in the ar ea of

pattern matching was invest igated . Two techniques were

developed assuming the images were of a single object on a

black background .  These techniques  wt r e  demonstra ted  to

work well in the above case. The possibilities of extending

these techniques to images that are more complex than a

single object on a black background were also discussed.

Pattern matct.ing is becoming more widely used and

needed in a variety of fields. Some of these include

mon itoring systems , identification systems , inspection of

objects (for quality control) to name but a few. Because of

the prospective growth of pattern matching, it is desirable

to have basic pattern matching algorithms on which to build.

Experimentation is needed to determine to what degree

the methods presented for computing generalized correlat ion

can be extended for images that are not of a single object

on a black background. Experiments with higher resolution

images may indicate that the techn iques developed can be of

greater value than indicated by the results of the limited

experimentation presented here . Several other types of

images were examined theoretically, namely a single object 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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background , but these types of images need to be further

examined experimentally. Other types of images , such as

mult iple objects on a texture d background need to be

considered both theoretically and experimentally.

The magnitude metho d suffers because all phase

information is removed. If only the linear phase components

could be removed then the algorithms could be simplified and

made more r e l i ab l e .  This involves  the fami l i a r  problem of

phase u n w r a p p i n g ,  hence it may not be computationally

reasonable.

The slowest step in the algorithms presenced is the

conversion from rectangular coordinates to exponential—polar

coordinates. If some way could be found to determine the

same information without the extensive resampling currently

required , the process could be s i gn i f i can t ly  accelera ted .

While the previous two suggest ions would help make

these a lgor i thms more pract ical , the l imi t a t ions  imposed by

the  techniques  used to separate  the genera l ized  cor re la t ion

remain  the biggest  p rob lem.  New t echniques  for s e p a r a t i n g

the general ized corre la t ion  which do not depend on the image

to be of a single object on a black background need to be

developed.  Research in this  area may provide the a lgo r i t hms

to make generalized correlation a powerful  and usefu l  tool

in pattern matching.

_ _  —---~~~~~-.-.. - - -
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